Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
1.
Heliyon ; 10(7): e28149, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560272

RESUMO

In this study, the objective is to explore the practicability of incorporating synthetic fibre reinforced polymer (SFRP) stirrups into reinforced concrete beams. This investigation revolves around evaluating their effectiveness from two key perspectives: their structural performance and environmental impact. To accomplish this, four set of specimens were prepared, each integrating SFRP stirrups, and testing them under a rigorous three-point bending load test. The structural performance analysis entails a comprehensive examination on the critical design factors such as: the load-deflection relationship and the contribution these SFRP stirrups to improve the ductility performance, flexural stiffness, deformability factor, flexural toughness and energy absorption capacity. The findings of this study indicate that the SFRP stirrups exhibit commendable shear capacity, meeting the necessary requirements, and simultaneously demonstrate satisfactory ductility. It is determined, that the optimal design for these SFRP stirrups involves utilizing narrow and thin stirrups placed at relatively larger intervals. Furthermore, this research delves into assessing the environmental impact of incorporating SFRP stirrups. This assessment enables us to comprehensively evaluate the environmental implications of the entire life cycle of these stirrups in structural beam. Moreover, the analysis reveals that, SFRP stirrups yields lower environmental impacts compared to their steel counterparts, they still provide valuable insights into the overall sustainability considerations within the context of reinforced concrete structures.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38598686

RESUMO

Clathrates are potential "phonon-glass, electron-crystal" thermoelectric semiconductors, whose structure of polyhedron stacks is very attractive. However, their mechanical properties have not yet met the requirements of industrial applications. Here, we report the ideal strength of element-substituted type-I and type-VIII clathrates and the shear deformation mechanism by using density functional theory. The results show that the framework element is the determinant of the intrinsic mechanical properties of the clathrates and is affected by sequential weakening of Si-Ge-Sn. The highest ideal shear strength is 8.71 GPa for I-Ba8Au6Si40 along the (110)/[001] slip system, which is attributed to the formation of higher-energy Si-Si covalent bonds. Meanwhile, the ideal shear strength of Ba-filled I/VIII clathrates (4.51/2.65 GPa) is higher than that of Sr-filled clathrates (3.64 GPa/1.91 GPa). In addition, the strength and ultimate strain of VIII-Ba8Ga16Sn30 can be significantly increased by the structural coordination accommodating with the stiffness of the Ga-Ge bond to achieve simultaneous bond breaking. Our findings demonstrate that the element substitution strategy is an effective approach for designing highly robust clathrates.

3.
Proc Inst Mech Eng H ; : 9544119241245503, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627994

RESUMO

The designed biomedical implants require excellent shear strength primarily for mechanical stability against forces in human body. However, metallic implants undergo stress shielding with release of toxic ions in the body. Thus, Fused Deposition Modeling (FDM) has made significant progress in the biomedical field through the production of customized implants. The mechanical behavior is highly dependent on printing parameters, however, the effect of these parameters on punch shear strength of ASTM D732-02 standard specimens has not been explored. Thus, in the current study, the effect of infill density (IFD), printing speed (PTS), wall thickness (WLT), and layer thickness (LYT) has been investigated on the punch shear strength using Response Surface Methodology. The Analysis of Variance (ANOVA) has been performed for predicting statistical model with 95% confidence interval. During the statistical analysis, the terms with p-value lower than 0.05 were considered significant and the influence of process parameters has been examined using microscopic images. The surface plots have been used for discussing the effect of interactions between printing parameters. The statistical results revealed IFD as the most significant contributing factor, followed by PTS, LYT, and WLT. The study concluded by optimization of printing parameters for obtaining the highest punch shear strength.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38579157

RESUMO

Objective: This in vitro study evaluates the shear bond strength (SBS) of yttria-stabilized tetragonal zirconia (Y-TZP) and resin cement after different surface treatments. Materials and methods: Forty-eight ceramic cubes were divided into four groups (n = 12): G1 (control) sandblasting with Al2O3; G2-sandblasting with silica-coated Al2O3 (Rocatec); G3-Rocatec + CO2 laser; and G4-CO2 laser + Rocatec. A metallic primer was applied to the pretreated ceramic. A rubber ring was adapted on the central area, and then, the resin cement was inserted into the matrix and photoactivated. The samples were evaluated regarding surface roughness (Ra), SBS, failure type, and qualitatively with scanning electron microscopy (SEM). The data were analyzed by one-way analysis of variance followed by Tukey's test (p < 0.05). Results: The mean values of Ra (µm) were as follows: G1-4.52a, G2-4.24a,b, G3-4.10a,b, and G4-2.90b and the mean values of SBS (MPa) were as follows: G1-7.84a , G2-4.41b , G3-4.61b and G4-6.14a,b. SEM analyses showed superficial irregularities for all groups, being more prominent for G1. The presence of silica deposits was observed for G2, G3, and G4, but in the last two groups there were some linear areas, promoted by the fusion of silica, due to the thermomechanical action of the CO2 laser. Conclusions: The surface treatment with CO2 laser + Rocatec, using one MDP-based cement, can be an alternative protocol for the adhesion cementation of Y-TZP ceramic since it was as effective as the conventional pretreatment with aluminum oxide sandblasting.

5.
Polymers (Basel) ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611141

RESUMO

Short fiber-reinforced thermoplastic polymers (SFRTPs) are commonly used in various molding methods due to their high specific elasticity and strength. To evaluate the interfacial strength, several determination methods have been proposed, including the interfacial shear strength (IFSS). In previous research, an IFSS evaluation method based on the short beam shear method was proposed. However, this method is only applicable to micrometer-sized fibers with high stiffness levels that are not easily bent. When utilizing cellulose fiber, the interfacial shear strength (IFSS) results frequently exhibit significant deviations. To tackle this issue, we suggest an enhanced experimental technique that employs beam-shaped specimens with welding points based on the short beam shear test. Furthermore, we conducted a three-dimensional analysis of the original method to determine the fiber orientation angle and IFSS. The outcomes were compared with previously reported determinations. The IFSS achieved through the novel method proposed in this paper exhibits high precision and reliability, rendering it suitable for use with soft and flexible fibers.

6.
Adv Biomed Res ; 13: 5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525401

RESUMO

Background: This study assessed the effect of combined application of hydrofluoric (HF) acid and phosphoric acid (PA) and active irrigation (AI) with a microbrush on shear bond strength (SBS) of lithium disilicate (LDS) ceramics to enamel. Materials and Methods: This in vitro study was conducted on 40 extracted teeth that received enamel preparation with a #12 cylindrical bur. Forty IPS e.max LT rods (3mm diameter, 6mm height) were fabricated and randomly assigned to four groups (n = 10) for surface treatment with 5% HF (group 1), 5% HF and AI with a microbrush for 20 seconds (group 2), 5% HF and 32% PA (group 3), and 5% HF and 32% PA plus AI with a microbrush for 20 seconds (group 4). Silane and Choice 2 cement were used for bonding rods to enamel. The SBS was measured by a universal testing machine. Data were analyzed by two-way analysis of variance (ANOVA), Bonferroni, and Chi-square tests (alpha = 0.05). Results: Group 4 had the highest SBS, and group 1 had the lowest SBS (P < 0.05). Group 2 had a significantly higher SBS than group 1, and group 4 had a significantly higher SBS than group 3. AI with a microbrush significantly increased the SBS (P < 0.05), but the application of PA caused no significant change in SBS (P > 0.05). The interaction effect of PA and AI on SBS was not significant (P > 0.05). Conclusion: The application of PA in addition to 5% HF acid caused no significant change in the SBS of LDS ceramic to enamel. However, AI with a microbrush significantly increased the SBS.

7.
Materials (Basel) ; 17(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38541477

RESUMO

The toughening modification of epoxy resin has received widespread attention. The addition of the second-phase resin has a good toughening effect on epoxy resin. In order to investigate the effect of the second-phase resin on the interphase of composites, in this work the interfacial properties of carbon fiber (CF)/epoxy resin with the second-phase resin structure were investigated. Methodologies including surface structure observation, chemical characteristics, surface energy of the CF, and micro-phase structure characterization of resin were tested, followed by the micro-interfacial performance of CF/epoxy composites before and after hygrothermal treatment. The results revealed that the sizing process has the positive effect of increasing the interfacial bonding properties of CF/epoxy. From the interfacial shear strength (IFSS) test, the introduction of the second phase in the resin reduced the interfacial bonding performance between the CF and epoxy. After the hygrothermal treatment, water molecules diffused along the interfacial paths between the two resins, which in turn created defects and consequently brought about a reduction in the IFSS.

8.
Materials (Basel) ; 17(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38541548

RESUMO

Brazing a SiO2f/SiO2 composite with metals is often faced with two problems: poor wettability with the brazing alloy and high residual stress in the joint. To overcome these problems, we report a combined method of selective etching and depositing reduced graphene oxide (rGO) on the surface of a SiO2f/SiO2 composite (3D-rGO-SiO2f/SiO2) to assist brazing with TC4. After the combined treatment, a "3D-rGO" buffer layer formed on the surface layer of the SiO2f/SiO2, and the contact angle was reduced from 130° to 38°, which meant the wettability of active brazing alloy on the surface of SiO2f/SiO2 was obviously improved. In addition, the "3D-rGO" buffer layer contributed to fully integrating the brazing alloy and SiO2f/SiO2; then, the infiltration of the brazing alloy into the surface layer of the SiO2f/SiO2 was enhanced and formed the reduced graphene oxide with a pinning structure in the three dimensional ("3D-pinning-rGO") structure. Moreover, the joining area of the brazing alloy and SiO2f/SiO2 was expanded and the mismatch degree between the SiO2f/SiO2 and TC4 was reduced, which was achieved by the "3D-pinning-rGO" structure. Furthermore, the concentration of the residual stress in the SiO2f/SiO2-TC4 joints transferred from the SiO2f/SiO2 to the braided quartz fibers, and the residual stress reduced from 142 MPa to 85 MPa. Furthermore, the 3D-pinning-rGO layer facilitated the transfer of heat between the substrates during the brazing process. Finally, the shear strength of the SiO2f/SiO2-TC4 joints increased from 12.5 MPa to 43.7 MPa by the selective etching and depositing rGO method.

9.
Sci Total Environ ; 926: 171868, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521278

RESUMO

The mechanical properties of reaction media in permeable reactive barriers (PRB) is vital in geoenvironmental applications. Bentonite, activated carbon and zeolite, recognized for their excellent adsorption capabilities, are employed as the main reaction media in PRB for the treatment of contaminated underground water. The compaction test and the undrained and unconsolidated triaxial test were carried out to investigate the compression and shear strength of the activated carbon-zeolite mixture and activated carbon-bentonite mixture at various composition ratios. The impact of compaction degree on samples' shear strength was analyzed. The influence of different composition ratios on the mechanical properties and the permeability of each reaction medium were also evaluated. The results show that the mechanical performance of most activated carbon-zeolite (AZs) is not satisfactory compared to natural soil and activated carbon-bentonite mixtures. Activated carbon­sodium bentonite (ANBs) and activated carbon­calcium bentonite (ACBs) present similar compaction characteristics and shear properties. In ANBs and ACBs, the cohesion of mixes with a mass ratio of 1:2 (ANB2 and ACB2) was found lower than that of mixes with mass ratios of 1:1 (ANB1 and ACB1) and 1:3 (ANB3 and ACB3). And in most ANB and ACB mixes, 100 % compaction produced higher moisture content and higher friction angle, but lower cohesion, compared to 92 % compaction degree. And the shear strength behavior of ANBs is dominated by both bentonite and activated carbon. The permeability of ACB1, AZ3 and ACB1-sand are at 1.31 × 10-6 m/s, 1.37 × 10-6 m/s and 7.72 × 10-7 m/s, respectively. These results provide valuable insights into the selection and optimization of reaction media for PRBs in geoenvironmental engineering applications.

10.
Front Microbiol ; 15: 1331120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468850

RESUMO

Currently, there is a growing interest in transforming wastewater treatment plants (WWTPs) into resource recovery plants. Microorganisms in aerobic granular sludge produce extracellular polymeric substances (EPS), which are considered sustainable resources to be extracted and can be used in diverse applications. Exploring applications in other high-value materials, such as adhesives, will not only enhance the valorization potential of the EPS but also promote resource recovery. This study aimed to characterize a water-soluble fraction extracted from the EPS collected at the demonstration plant in the Netherlands based on its chemical composition (amino acids, sugar, and fatty acids) and propose a proof-of-concept for its use as an adhesive. This fraction comprises a mixture of biomolecules, such as proteins (26.6 ± 0.3%), sugars (21.8 ± 0.2%), and fatty acids (0.9%). The water-soluble fraction exhibited shear strength reaching 36-51 kPa across a pH range of 2-10 without additional chemical treatment, suggesting a potential application as an adhesive. The findings from this study provide insights into the concept of resource recovery and the valorization of excess sludge at WWTPs.

11.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475263

RESUMO

This study focuses on evaluating the fatigue life performance of 3D-printed polymer composites produced through the fused deposition modelling (FDM) technique. Fatigue life assessment is essential in designing components for industries like aerospace, medical, and automotive, as it provides an estimate of the component's safe service life during operation. While there is a lack of detailed research on the fatigue behaviour of 3D-printed polymer composites, this paper aims to fill that gap. Fatigue tests were conducted on the 3D-printed polymer composites under various loading conditions, and static (tensile) tests were performed to determine their ultimate tensile strength. The fatigue testing load ranged from 80% to 98% of the total static load. The results showed that the fatigue life of the pressed samples using a platen press was significantly better than that of the non-pressed samples. Samples subjected to fatigue testing at 80% of the ultimate tensile strength (UTS) did not experience failure even after 1 million cycles, while samples tested at 90% of UTS failed after 50,000 cycles, with the failure being characterized as splitting and clamp area failure. This study also included a lap shear analysis of the 3D-printed samples, comparing those that were bonded using a two-part Araldite glue to those that were fabricated as a single piece using the Markforged Mark Two 3D printer. In summary, this study sheds light on the fatigue life performance of 3D-printed polymer composites fabricated using the FDM technique. The results suggest that the use of post-printing platen press improved the fatigue life of 3D-printed samples, and that single printed samples have better strength of about 265 MPa than adhesively bonded samples in which the strength was 56 MPa.

12.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38475261

RESUMO

Carbon/Phenolic Composites (CPCs) are essential to manufacture many portions of the nozzle assembly of Solid Rocket Motors (SRMs) which are essential both to preserve the independent access to space as well as for the homeland security. In our research, a feasible approach aimed at preliminary retrieving the in-plane and out-plane thermal diffusivity of CPCs through the Oxy-Acetylene Torch (OAT) tests was validated. The proposed approach showed to be effective and able to bypass some limitations of common protocols, especially in terms of capability to determine the thermal diffusivity of CPCs at high heating rates. A comprehensive work of comparison of the obtained data with state-of-the-art CPCs such as MX-4926 and FM-5014 has also been carried out, evidencing the effectiveness of the proposed method.

13.
Materials (Basel) ; 17(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473526

RESUMO

With the continuous reduction of chip size, fluxless soldering has brought attention to high-density, three-dimensional packaging. Although fluxless soldering technology with formic acid (FA) atmosphere has been presented, few studies have examined the effect of the Pt catalytic, preheating time, and soldering pad on FA soldering for the Sn-58Bi solder. The results have shown that the Pt catalytic can promote oxidation-reduction and the formation of a large pore in the Sn-58Bi/Cu solder joint, which causes a decrease in shear strength. ENIG (electroless nickel immersion gold) improves soldering strength. The shear strength of Sn-58Bi/ENIG increases under the Pt catalytic FA atmosphere process due to the isolation of the Au layer on ENIG. The Au layer protects metal from corrosion and provides a good contact surface for the Sn-58Bi solder. The shear strength of the Sn-58Bi/ENIG joints under a Pt catalytic atmosphere improved by 44.7% compared to using a Cu pad. These findings reveal the improvement of the shear strength of solder joints bonded at low temperatures under the FA atmosphere.

14.
Gen Dent ; 72(2): 55-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411486

RESUMO

The aim of this study was to evaluate the influence of the type of etchant on the shear bond strength (SBS) of metallic brackets to enamel and the Adhesive Remnant Index (ARI) after debonding. A total of 30 mandibular and maxillary premolars were randomly distributed into groups (n = 10) treated with 1 of 3 enamel surface-conditioning agents: 35% phosphoric acid (PA), 35% glycolic acid (GA), or 35% ferulic acid (FA). The designated acid was applied to the buccal enamel surface of the tooth for 20 seconds, and the tooth was then rinsed with distilled water for 20 seconds and air dried for 5 seconds. A metal bracket was bonded to the prepared surface with light-cured orthodontic resin. After 24 hours, the bracket-tooth interface was submitted to SBS testing in a universal testing machine at a speed of 0.5 mm/min. After debonding, the enamel surface was observed under a stereomicroscope (×20 magnification) to determine the ARI. The generalized linear models showed that the PA and GA groups presented significantly higher SBSs than the FA group (P = 0.0003). The ARI was significantly higher in specimens treated with PA than with the other acids (P < 0.05; Kruskal-Wallis and Dunn tests), with a larger quantity of adhesive remaining adhered to the tooth. Both PA and GA are effective for bonding brackets, but GA resulted in a lower percentage of adhesive remnant adhered to the enamel.


Assuntos
Ácidos Cumáricos , Glicolatos , Braquetes Ortodônticos , Humanos , Esmalte Dentário , Ácidos Fosfóricos
15.
Environ Pollut ; 346: 123545, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346632

RESUMO

Microplastic (MP) contamination is a growing global concern, with lake sediments serving as a significant sink for MP due to both anthropogenic and natural activities. Given the increasing evidence of MP accumulation in sediments, it was crucial to assess their influence on sediment erosion resistance, which directly affected sediment resuspension. To fill this gap, this study focused on the effect of MP on the sediments rheological properties. After 60-day experiments, it was found that MP addition into sediments reduced sediment viscosity, yield stress, and flow point shear stress. Meanwhile, MPs also significantly altered sediment properties and extracellular polymer composition. MP addition reduced extracellular polymeric substances production and cation exchange capacity, which then worked together and led to a weak sediment structure. Seemingly, MPs changed fluid sediment characteristics and caused stronger fluidity under less shear force. Consequently, the accumulation of MP might facilitate the resuspension of sediments under smaller wind and wave disturbances. This study provided novel insights into the direct impact of MPs on sediment physical properties using rheology, thereby enhancing our understanding of the environmental behavior of MPs in lake ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/química , Lagos/química , Plásticos , Sedimentos Geológicos/química , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental
16.
Macromol Rapid Commun ; : e2300663, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38375776

RESUMO

As the second most abundant biopolymer, lignin remains underutilized in various industrial applications. Various forms of lignin generated from different methods affect its physical and chemical properties to a certain extent. To promote the broader commercial utilization of currently available industrial lignins, lignin sulfonate (SL), kraft lignin (KL), and organosolv lignin (OL) are utilized to partially replace phenol in the synthesis of phenol formaldehyde (PF) adhesives. The impact of lignin production process on the effectiveness of lignin-based phenolic (LPF) adhesives is examined based on the structural analysis of the selected industrial lignin. The results show that OL has more phenolic hydroxyl groups, lower molecular weight, and greater number of reactive sites than the other two types of lignins. The maximum replacement rate of phenol by OL reaches 70% w/w, resulting in organosolv lignin phenolic (OLPF) adhesives with a viscosity of 960 mPa·s, a minimal free formaldehyde content of 0.157%, and a shear strength of 1.84 MPa. It exhibits better performance compared with the other two types of lignin-based adhesives and meets the requirements of national standards.

17.
Polymers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337287

RESUMO

The investigation of interconnection technologies is crucial for advancing semiconductor packaging technology. This study delved into the various methods of achieving electrical interconnections, focusing on the sintering process and composition of the epoxy. Although silver (Ag) has traditionally been utilized in the sintering process, its high cost often precludes widespread commercial applications. Copper (Cu) is a promising alternative that offers advantages, such as cost-effectiveness and high thermal and electrical conductivities. However, the mechanical robustness of the oxide layers formed on Cu surfaces results in several challenges. This research addresses these challenges by integrating epoxy, which has advantages such as adhesive capabilities, chemical resistance, and robust mechanical properties. The chemical reactivity of the epoxy was harnessed to both fortify adhesion and inhibit oxide layer formation. However, the optimal sintering performance required considering both the composite composition (20 wt% epoxy) and the specific sintering conditions (pre-heating at 200 °C and sintering at 250 °C). The experimental findings reveal a balance in the incorporation of epoxy (20 wt%) for the desired electrical and mechanical properties. In particular, the bisphenol A epoxy (Da)-containing sintered Cu chip exhibited the highest lab shear strength (35.9 MPa), whereas the sintered Cu chip without epoxy represented the lowest lab shear strength of 2.7 MPa. Additionally, the introduction of epoxy effectively curtailed the onset of oxidation in the sintered Cu chips, further enhancing their durability. For instance, 30 days after sintering, the percentage of oxygen atoms in the Da-containing sintered Cu chip (4.5%) was significantly lower than that in the sintered Cu chip without epoxy (37.6%), emphasizing the role of epoxy in improving Cu oxidation resistance. Similarly, the samples sintered with bisphenol-based epoxy binders exhibited the highest electrical and thermal conductivities after 1 month. This study provides insights into interactions between epoxy, carboxylic acid, solvents, and Cu during sintering and offers a foundation for refining the sintering conditions.

18.
Heliyon ; 10(4): e26489, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420417

RESUMO

Slaking is a process of material parameters alteration resulting from wetting-drying cycles, changes in overburden stress, and chemical interactions. Tailings Storage Facilities (TSF) constructed with materials prone to slaking may experience breaches, especially during the post-closure period, due to the deterioration of shear strength and permeability characteristics. Rockfill materials, particularly those containing clay components, can undergo various forms of crack formation, leading to disintegration as a result of wetting-drying cycles, stress increments, and intense compaction. However, there are currently limited methodologies available for replicating such material alterations on a laboratory scale. Therefore, a new large-scale laboratory testing approach has been designed to simulate variations in wetting-drying cycles, humidity, and overburden pressure, enabling the prediction of the slaking potential of TSF construction materials. This novel methodology replicates field drying-wetting cycles and variations in humidity and overburden stress in a controlled environment, allowing for the estimation of the deterioration of shear strength and permeability characteristics in rockfill materials.

19.
Int J Biol Macromol ; 262(Pt 1): 129802, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296149

RESUMO

Starch is a biomass polymer material with a high yield and comprehensive source. It is used as a raw material for preparing adhesives because of its highly active hydroxyl group. However, poor adhesion and water resistance hinder the application of starch-based adhesives (SBAs). Based on this, the starch was modified through graft copolymerization with itaconic acid as a cross-linking agent, methyl methacrylate and methyl acrylate as copolymers. Additionally, reed fibers were synergistically modified with polydopamine deposition to prepare an environmentally friendly SBA used in plywood production. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H NMR), X-ray diffraction (XRD), and thermogravimetric analysis (TG) demonstrate that copolymerization of methyl methacrylate and methyl acrylate with starch improves the shear strength, water resistance, and thermal stability of the SBA. Compared to unmodified starch, the modified SBA exhibits a 129 % increase in dry strength and achieves a wet strength of 1.36 MPa. Fukui function, Frontier orbit theory, and molecular dynamics simulation have shown that itaconic acid promotes the copolymerization of starch and acrylate monomers. The modified starch has fewer hydrogen bonds, less order, and a denser macromolecular network structure, which provides a reference for studying the molecular interaction mechanisms of SBAs.


Assuntos
Acrilatos , Simulação de Dinâmica Molecular , Amido , Succinatos , Amido/química , Adesivos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Metacrilatos
20.
Sensors (Basel) ; 24(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203168

RESUMO

Fiber Bragg grating sensors (FBGs) are promising for structural health monitoring (SHM) of composite structures in space owing to their lightweight nature, resilience to harsh environments, and immunity to electromagnetic interference. In this paper, we investigated the influence of low Earth orbit (LEO) conditions on the integrity of composite structures with embedded optical fiber sensors, specifically FBGs. The LEO conditions were simulated by subjecting carbon fiber-reinforced polymer (CFRP) coupons to 10 cycles of thermal conditioning in a vacuum (TVac). Coupons with embedded optical fibers (OFs) or capillaries were compared with reference coupons without embedded OFs or capillaries. Embedded capillaries were necessary to create in situ temperature sensors. Tensile and compression tests were performed on these coupons, and the interlaminar shear strength was determined to assess the influence of TVac conditioning on the integrity of the composite. Additionally, a visual inspection of the cross-sections was conducted. The impact on the proper functioning of the embedded FBGs was tested by comparing the reflection spectra before and after TVac conditioning and by performing tensile tests in which the strain measured using the embedded FBGs was compared with the output of reference strain sensors applied after TVac conditioning. The measured strain of the embedded FBGs showed excellent agreement with the reference sensors, and the reflection spectra did not exhibit any significant degradation. The results of the mechanical testing and visual inspection revealed no degradation of the structural integrity when comparing TVac-conditioned coupons with non-TVac-conditioned coupons of the same type. Consequently, it was concluded that TVac conditioning does not influence the functionality of the embedded FBGs or the structural integrity of the composite itself. Although in this paper FBG sensors were tested, the results can be extrapolated to other sensing techniques based on optical fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...